KHAIRA COLLEGE, KHAIRA, BALASORE

DEPARTMENT OF PHYSICS
 QUESTIDN BANK
 UG $3^{\text {RD }}$ Sem - CC - V

Answer all questions

1- Answer the following:

[1mark]
a) The period of sine function is \qquad .
b) The product of an odd function and even function is \qquad .
c) $\beta(9,15)-\beta(15,9)=$ \qquad .
d) For a stationary wave, the points where there is no displacement of particles are called \qquad .
e) At \qquad point a function is not analytic.
f) $\operatorname{erf}(x)+\operatorname{erf}(-x)=$ \qquad .
g) $\gamma(n+1)=$ \qquad .
h) Can a non periodic function be expanded in Fourier series?
i) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\cdots=$ \qquad .
j) If $\mathrm{f}(\mathrm{x})$ is odd in $(-\pi, \pi)$ the Fourier co-efficient, $a_{n}=$ \qquad .
k) $y^{n}+\frac{y}{x^{3}}=0, x=0$ is \quad singular point. (regular/ irregular)
I) $\quad \beta(m, n)=\beta(n, m)$ (True $/$ False).
m) $P_{n}(1)=$ \qquad .
n) What is the value of $H_{2}(x)$?
o) Write generating function of Hrmite's Polynomial.
p) The solution of Laplace equation is $V(x)=$ \qquad .

2- Answer the following (Very short type) :-
[1.5 marks]
a) Find the period of $\cos \pi x / 2 L$.
b) Define even and odd function with examples.
c) Define ordinary point.
d) Find the value of Legendre Polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ at $\mathrm{x}=0$.
e) Write Rodrigue's formula for Hermitie's polynomials. Find its value for $\mathrm{n}=0$.
f) Find the singular point of Laguerre differential equation.
g) Find the value of $r(\tau)$.
h) Find the order and degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)+2\left(\frac{d y}{d x}\right)^{2}+5 y=0
$$

i) What is the solution of the partial differential equation $\frac{\partial u}{\partial x}=$ $2 \frac{\partial u}{\partial y}$, of $\mathrm{u}(0, \mathrm{y})=e^{-2 y}$.
j) Show that β-function is symmetric.
k) Write Fourier Cosine series.
l) Evaluate $\beta\left(\frac{3}{2}, \frac{1}{2}\right)$.
m) Define irregular singular point.
n) Write Dirchelet condition.
o) Prove that $P_{n}(1)=1$.
p) Prove that $P_{0}(x)$ and $P_{1}(x)$ are orthogonal t each other.
q) Define standard error.
r) State two properties of Hermite Polynomial.
s) Write Laplace equation in Cartesian coordinate system.
t) Define normal modes of vibration in string.

3- Answer the following (Sort type) :-
[2 marks]
a) For a period function $f(x)$, write the expression for Fourier series and find the $1^{\text {st }}$ co-efficient ' a_{0} '.
b) Find the singular point of the differential equation $x^{2} y^{\prime \prime}+2 x y^{\prime}+\lambda y=0$.
c) Find the Fourier series expansion of $f(x)=x$ in $(-\pi, \pi)$.
d) Prove that $P_{n}(-x)=(-1)^{n+1} P_{n}(x)$.
e) Explain regular singular point for a differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

f) Evaluate $\int_{0}^{\infty} x^{3} e^{-x^{2}} d x$.
g) Define error function. Write two characteristics.
h) What are harmonics and overtones?
i) Find the value of $\gamma\left(\frac{3}{4}\right) \times \gamma\left(\frac{1}{4}\right)$.
j) Prove that $\int_{0}^{\infty} \frac{x^{8}\left(1-x^{6}\right)}{(1+x)^{24}} d x=0$.
k) Find the period of the periodic function

$$
\mathrm{F}(\mathrm{t})=r \sin \left(\frac{\mathrm{t}}{\mathrm{~T}}+\frac{\pi}{4}\right) .
$$

I) State Parseval's identity.
m) Find cosine series for $f(x)=x$ in $0 \leq x \leq \pi$.
n) State orthogonality condition of Legendre's Polynomials.
o) Show that $H_{2 s}^{1}(0)=0$.
p) Prove that $\operatorname{erf}(x)+\operatorname{erfc}(x)=1$.
q) Define Gamma function.
r) Express the integral $\int_{0}^{\infty} \frac{x^{3}}{(x+1)^{5}} d x$ in terms β function.
s) Define spherical harmonic, find them in terms of Legendre Polynomials.
t) Write Rodrigiue formula for Hermite Polynomial.

4- Answer the followings (Long type) :-
[6marks]
a) Find the Fourier series for $f(x)=x \sin x$ in the interval $(-\pi, \pi)$ and show that .

$$
\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}
$$

\qquad
b) State and prove Parseval identity.
c) Find series solution of Hermite's differential equation.
d) Derive Rodrigue's formula for Lagendre polynomials.
e) Derive expression for Associated Legendre differential equation.
f) Define γ-function and β-function. Derive a relationship between them.
g) Write Laplace's equation in spherical polar co-ordinates and find a solution for it by using method of separation of variables.
h) Write the expression for wave equation. Find the solution for it.
i) Find Fourier series of $f(x)=x^{2}$ in $[0,2 \pi]$.
j) Find the complex from of Fourier series $f(t)=\sin t, 0<t<T$.
k) Show that the Hermite Polynomial are generated by generating function, $g(x, t)=e^{2 x t-t^{2}}$.
I) Prove that Orthogonal Property of Hermite Polynomial.
m) Prove that $2 x H_{n}(x)=2 n H_{n-1}(x)+H_{n+1}(x)$
n) i) Find $\sqrt{\left(\frac{1}{4}\right)}, \sqrt{\left(\frac{3}{4}\right)}$
ii) Show that $\beta(m, n)=\frac{m+n}{n} \beta(m, n+1)$.
o) Write and solve Laplace's equation in spherical coordinate.
p) Applying Laplace's equation discuss conducting sphere in an external uniform electric field.

